

Introduction

- OBJECTIVE: Determine dopamine microelectrode placen striatum
- Rats were an anesthetized with urethane
- Make an incision to clear skin and fascia
- Drill a hole for FSCV microelectrode in the dorsal stria dremel bit at
- AP = +1.0mm; ML = +2.0mm; DV = -4.5mm
- Drill a hole for stimulating electrode in the medial forek AP = -4.6mm; ML = +1.4mm; DV = -7.0mm
- Make a final hole for a reference electrode
- Dopamine signals were recorded (stim at 60 Hz, 60 p five-minute intervals

- EWU Department of Biology
- McNair Research funding

Determining dopamine microelectrode placement in the rat brain

Claudio Escalante, David Daberkow, Gracie Rosenbaum, Jair Alvarez Eastern Washington University, Department of Biology, Cheney, WA 99004

After dopamine is recorded, we prove Remove stimulating and reference electrode Zap for 45 sec Decapitate and remove brain Freeze brain in liquid nitrogen for 10 Section brain (12 μm coronal section sections on microscope slide Stain brain sections and then protect Visualize with a dissection microscope
<image/> <image/>

References

Clark et al. (2013) Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. *J Neurosci* 33:3526-3532.

known as nucleus accumbens). (C.) Microelectrode tip location (arrow) at higher magnification.

 \bigcirc

By Claudio Escalante August 17, 2022

TRIO Scholar Program

Fast Scan Cyclic Voltammetry (FSCV)

Fig. 1. Chronic fast-scan cyclic voltammetry (FSCV) microelectrode. Relative small size of the carbon fiber sensor (~150 μ m x 5 μ m) results in little tissue damage at DA recording site. *Modified* from Clark et al. 2010.

Dopamine Neuroanatomy

Human

 \bigcirc

Rat

Dopamine Surgery

Experimental Design

CFM = carbon fiber microelectrode

STIM = stimulating electrode

Brain slicing prep

Cryostat brain slicing machine

 \bigcirc

Staining

Results

CE sectioned – rat surgery 6-01-22 slide 4 – section 4

GR sectioned – rat surgery 5-25-22 slide 8 – section 1

Results

DLS = Dorsal lateral striatum

DMS = Dorsal medial striatum

VS = Ventral striatum

Questions?

TRIO MCNair Scholar Program

NAS

EWL

Lab

Daberkow lab EWU Department of Biology McNair Research funding