Mark and Alisha were sent to buy ice cream for a class party. Their favorite flavors came in a 64 -ounce package for $\$ 6.79$ and a 48 -ounce package for $\$ 4.69$.

- To find which is the better buy, Mark divided like this:

$$
\frac{6.79}{64}=.10609375 \quad \frac{4.69}{48}=.097708 \overline{3}
$$

Explain how these ratios can tell Mark which ice cream is the better buy.

- Alisha claimed she could use different ratios to solve this problem. She divided like this:

$$
\frac{64}{6.79} \approx 9.42562592 \quad \frac{48}{4.69} \approx 10.2345418
$$

Is Alisha correct? Explain your answer.

Mark and Alisha were sent to buy ice cream for a class party. Their favorite flavors came in a 64-ounce package for $\$ 6.79$ and a 48-ounce package for $\$ 4.69$.

- How can Mark tell which ice cream is the better buy?
- After looking at Mark's work, Alisha claimed she could use a different way to solve this problem. What might Alisha have done?

Mark and Alisha were sent to buy ice cream for a class party. Their favorite flavors came in a 64 -ounce package for $\$ 6.79$ and a 48-ounce package for $\$ 4.69$.

- To find which is the better buy, Mark divided like this:

$$
\frac{6.79}{64} \quad \frac{4.69}{48}
$$

Explain how these ratios can tell Mark which ice cream is the better buy.

- Alisha claimed she could use different ratios to solve this problem. She divided like this:

$\frac{64}{6.79}$	$\frac{48}{4.69}$

Is Alisha correct? Explain your answer.

