## Quadratics and Circles and Midpoints, Oh My!

a) Create a factorable trinomial in the form $x^{2}-s x+p=0$
b) Let $A$ be the point $(0,1)$ and $B$ be the point $(s, p)$ where $s$ and $p$ are the values from part (a). Find the midpoint of segment $A B$, let's call it point $M$.
c) Plot the points $\mathrm{A}, \mathrm{B}$, and M .
d) Use a compass to graph the circle with center at $M$ and diameter of segment $A B$.
e) Solve the quadratic equation in part (a).
f) What do you notice about the $x$-intercepts of the circle as they relate to the quadratic equation in part (a)?

Let's see if your hypothesis in part ( $\mathbf{f}$ ) is correct!
g) Find the exact length of the radius of the circle. (In other words, leave as a square root if not a perfect square.)
h) Write the equation of the circle.
i) Use the equation of the circle to calculate the $x$-intercepts of the circle algebraically.
j) Was your hypothesis in part (f) correct?
k) Try the process again with a different quadratic equation from part (a).

Will this work every time?
l) Let's start at step $g$ ) and do the problem in general. In other words, work the problem with the point $A$ at $(0,1)$ and the point $B$ at $(s, p)$. Explain your results.

